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Abstract— In this paper, we propose a point cloud based
method driven by an RGB-D camera for robotic arc welding.
The method consists of two parts: groove detection algorithm
and 3D welding trajectory planning. Since actual welding scenes
could be represented in format of 3D point cloud generated
by an RGB-D camera, the welding groove detection algorithm
purely based on 3D point cloud focuses on geometrical feature
of welding groove. The detection algorithm is capable of well
adapting to general welding workpieces with different types of
welding groove. Meanwhile, the 3D welding trajectory involving
6-DOF poses of the welding groove for robotic manipulator
motion is generated. With acceptable error of the trajectory
planning, the robotic manipulator could drive the welding
torch to follow the trajectory and execute welding tasks. Also
details of the integrated robot system are presented in this
paper. Experimental results show application feasibility of the
proposed method.

I. INTRODUCTION

Nowadays industrial robotic manipulators are imple-
mented extensively in many factories around the world.
It is quite time-consuming to program these manipulators
manually by experienced robot operators which is the pattern
of teach-playback. More specifically, in order to manipulate
a robotic arm for welding tasks, a human operator needs
to set each path point of welding trajectories with precise
three-dimensional position and three-dimensional orientation
in advance. This sort of conventional robotic use lacking
of efficiency has been already unable to cope with growing
welding demand of construction industry.

To improve the weakness, it is encouraging to employ
various sensors with the manipulators for more intelligent
welding tasks. Prevailing perceiving systems involve vision
sensors [1]–[3], RGB-D sensors [4]–[6], ultrasonic sensors
[7], sound sensors [8], infrared sensors [9] and laser sensors
[10]. During actual robotic welding tasks under complex
and unpredictable situation, it is quite essential to plan a
precise trajectory [11] of the welding groove between two
workpieces to achieve acceptable welding quality. Recently,
2D imaging processing methods have been a hot-point and
a useful technology to assist robotic welding in various
industrial environment [12]. With respect to common weld-
ing tasks, 2D vision sensors capture one frame image of
workpieces. L. Nele · E et al. [13] established an image
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acquisition system using a CCD video camera for real-time
weld seam tracking.

However, 2D imaging processing algorithms relying on
color information cannot address dramatic environmen-
tal brightness variation particularly in welding fields. Re-
searchers have been preferring to 3D vision sensors due to
obtaining abundant information of welding fields. Also with
advancement of Point Cloud Library (PCL) [14] specially
designed for 3D point cloud processing, it is possible to
extract and locate the target region in surface point cloud
of welding workpieces. One type of 3D sensors, the stereo
camera is used to realize welding seam reconstruction and
tracking [15], achieving good planning accuracy. Compared
with state-of-the-art algorithms on RGB-D semantic segmen-
tation and 3D washer models from ShapeNet dataset, an
unorganized point cloud based edge and corner detection
algorithm [16] is proved for applicable robotic welding. With
the emergence of inexpensive RGB-D sensors such as Mi-
crosoft Kinect, Intel RealSense and Apple PrimeSense [17],
some approaches fusing RGB images and depth information
have been developed [18]. Through integrating an RGB-D
sensor into the robot system [19], the controller is able to
be implemented in dynamic welding environment. Due to
RGB images used to detect the weld groove and point cloud
used to obtain the 3D position of weld groove, Li et al. [20]
proposed a welding groove recognizing approach using an
RGB-D camera.

One of the main problems in above research works based
on 3D sensors is that their experimental results lack of testing
different types of welding workpieces sufficiently. Inspired
by a research work [21], the proposed method in this paper
focuses on welding groove detection and 3D motion tra-
jectory planning. Experimental results involve three aspects:
runtime efficiency, groove detection accuracy and trajectory
execution. The performance of the system testing four gen-
eral types of workpieces in experiment prove its feasibility in
actual welding application. Besides, the demonstration video
is online: https://vimeo.com/371773986. And main
contributions of this paper are following:

1) An integrated intelligent robot system with character-
istic of light-weight is designed for executing welding
tasks efficiently.

2) A point cloud processing based welding groove de-
tection algorithm for unpredictable workpieces is pro-
posed.

3) Automatic 3D welding trajectory planning method is
implemented on a 6-DOF robotic arm.

https://vimeo.com/371773986


II. ROBOT SYSTEM IMPLEMENTATION

The integrated robot system contains a robotic manipulator
(Universal Robot 3), an RGB-D camera (Intel Realsense
D415) and a welding torch. The end-effector part and the
whole experimental platform are shown as Fig. 1. The
welding torch is installed on the end-wrist of the robotic
manipulator tightly by supportive metal structure for stable
welding execution. Also, the RGB-D camera is physically
connected to the welding torch instead of being installed
at a fixed position within the welding platform. The design
of the RGB-D camera moving with the welding torch is
able to cope with unpredictable welding situation flexibly.
And it is simple to run hand-eye calibration for obtaining
the quite accurate transformation matrix between the camera
coordinate and UR3 base coordinate.

RGB-D camera (Realsense D415)

welding torch robotic arm (UR3) workpiece (cylinder)

Fig. 1. (on left) End-effector of the proposed welding robot system is
composed of an RGB-D camera and a welding torch. The camera is situated
above the welding torch. (on right) Experimental welding platform.

workpieces
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Fig. 2. Workflow of the proposed robot system: (1) the RGB-D camera
captures surface point cloud of workpieces. (2) the welding groove detection
algorithm locates the welding groove region in the input point cloud. (3) the
trajectory planning method processes the groove point set and outputs a 3D
welding trajectory. (4) the manipulator automatically executes the welding
motion while tracking the generated trajectory.

The system running procedure is shown in Fig. 2 in which
the PC with ubuntu 16.04 is Lenovo-Thinkpad whose CPU
uses Intel i5. ROS [22], an open source robot operating
system is used to build up software framework which makes
it convenient to develop algorithm modules. The welding
groove detection totally relies on PCL to process point cloud
and extract geometric feature. Moveit [23] package as one
part of the software system is utilized to control the UR3
robotic arm with motion planning and collision avoidance.

III. WELDING GROOVE DETECTION

The welding groove detection algorithm extracts the
groove region by computing geometric feature of input point
cloud which represents surface profile of welding work-
pieces. The geometric feature is defined as surface variation
which means degree of surface slope change. Compared with
flat and smooth regions, the groove region has higher surface
variation, shown as Fig. 3.

(a) (b)

grooveflat

Fig. 3. Geometric feature diagram of surface. (a) flat region. (b) groove
region.

In order to describes surface variation mathematically, a
novel 3D feature histogram in the algorithm is designed.
Furthermore, a descriptor called Surface Variation Descriptor
is computed for each point of the input point cloud. Thus the
descriptor is used to distinguish between the groove region
and other regions.

A. Input Point Cloud Preprocessing

(a) (b)

(c) (d)

Fig. 4. RGB-D camera captures surface point cloud of the workpieces with
straight-line welding groove. (a) robotic manipulator moves to a proper pose
so that the camera could capture complete point cloud. (b) the surface point
cloud is shown in simulation (Rviz). (c) the real workpieces in side view.
(d) the raw point cloud is organized.

In the first beginning, the RGB-D camera moves to an
appropriate pose by the robotic arm and captures one frame
of raw point cloud covering the whole surface of workpieces,
shown as Fig. 4. Then the raw point cloud is taken as input
of the welding groove detection algorithm.

In general there is noise data in the raw point cloud
owing to hardware factors of the camera. Thus the point
cloud needs smoothing before next step. PCL provides a
Moving Least Squares (MLS) surface reconstruction method
to smooth point cloud surface and reduce noisy data. Fig. 5
shows before-after result of smoothing processing for point
cloud of the testing welding workpieces in Fig. 4. It clearly



demonstrates that after smoothing the point cloud has more
even and gentle surface.

(a) (b)

Fig. 5. Raw point cloud smoothing. (a) point cloud before smoothing has
too many noisy regions. (b) point cloud after smoothing has more even
surface.

Surface normal computation is a fundamental part for
welding groove detection. Also PCL offers mathematical
method to estimate surface normal of each point. Theoret-
ically, given a cluster of point cloud, computing one point
normal actually is a problem of estimating a normal of a
plane tangent to the point cloud surface. Of course, the
plane must pass through this point. Simply put, one point’s
neighbor (a sphere with a constant radius and the point is
the sphere’s center) is a small cluster of point cloud which
could fit a plane. Therefore normal of this plane is regarded
as normal of the point.

(a)

(c)

(b)

(e)(d)

Fig. 6. Surface normal map. Each white arrow represents the normal of
each point. (a) groove region. (b) flat region. (c) edge region. (d) surface
point cloud. (e) groove region.

Then normalized map of surface normal shown in Fig. 6
for the after-smoothing point cloud is obtained by iterating
every point with least-square plane fitting. Moreover, each
point normal ~ui shown as a white arrow in Fig. 6 is a unit
vector defined as:

~ui = [xi, yi, zi]
T ,
√

(xi)2 + (yi)2 + (zi)2 = 1 (1)

where i represents the i-th point in organized point cloud.
Due to an inspiring research work [24] for object recogni-

tion, a descriptive method called Groove Feature Histogram
(hereinafter referred to as GFH) is designed in this section
to quantify surface variation degree. The GFH computed
for each point of the point cloud has two types: local
GFH extracting the feature of local surface variation and
global GFH considering the whole point cloud based surface
variation. Furthermore, through local GFH and global GFH

of one point, Surface Variation Descriptor of this point
mentioned in Sec. III is generated.

As previous discussed, in mathematics one surface normal
in 3D space is expressed by a unit vector consists of three
parameters. Besides, each normal has its own main direction.

B. Local GFH

Since one point’s neighbor is defined as a sphere (the point
is its central point) with a constant radius r. Within this
neighbor, the kdTree search method is used to find other
neighbor points (Euclidean distance to the central point is
not more than r). Points of the neighbor is regarded as a
individual point set where the normal of each point could
be obtained from the surface normal map (Fig. 6). Then the
central point is paired with every other neighbor point and
every pair has two unit vectors which form one included
angle. Fig. 7 shows one point’s neighbor with one pair.
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Fig. 7. (on left) The neighbor N of one point P is defined as a sphere
whose radius is r. Within the neighbor N , the red point is the central point
Pc of the sphere and the blue points are neighbor points. (on right) The
central point Pc with its normal uc is paired to one neighbor point P1 with
its normal u1. θ1 is the included angle between uc and u1.
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Fig. 8. Local groove feature histogram. The groove region has higher
variation than the flat region.

Generally since 3D position of all the points are relevant
to the manipulator base coordinate system through rigid
transformation, all the point normals are based on the same
coordinate XY Z as shown in Fig. 7 (right). Furthermore, the
included angle θj of the j-th pair within the center point’s
neighbor is computed as:

θj = arccos
~uc · ~uj
| ~uc| · | ~uj |

(2)



where ~uc is normal of the center point and ~uj is normal
of the j-th neighbor point paired to the center point. By
using Equation (2) for iterating every pair of the neighbor,
all the computation results are arranged as a set (Θ =
{θ1, θ2, ..., θn}, n is number of the neighbor points), which
builds up local GFH of the center point. Fig. 8 shows local
GFH of one point from the groove region and one point from
flat regions.

C. Global GFH

As for global GFH, it needs to take the whole point
cloud into account. Therefore unit benchmark normal ~ub
representing main direction of the whole point cloud is
defined as:

~Ub =

n∑
i=0

~ui, ~ub =
~Ub∣∣∣ ~Ub

∣∣∣ (3)

where ~ui is the i-th point normal of the point cloud.
Still discussing neighbor of the previous point (the central

point Pc in Fig. 7), each point normal in the neighbor is
paired to the benchmark normal ~ub, shown as Fig. 9.
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Fig. 9. Every point normal of the neighbor is paired to the benchmark
normal. For example of one pair (the central point normal ~uc and the
benchmark normal ~ub), β0 is the included angle between ~uc and ~ub.
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Fig. 10. Global groove feature histogram. The groove region has higher
variation than the flat region.

In the same principle as local GFH, the k-th included angle
βk of the neighbor is computed as:

βk = arccos
~ub · ~uk
| ~ub| · | ~uk|

(4)

Therefore all the resultant included angles are put into one
set (B = {β1, β2, ..., βn}) which builds up global GFH of
the central point. Fig. 10 shows global GFH of one point
from the groove region and one point from flat regions.

D. Surface Variation Descriptor

According to local GFH III-B and global GFH III-C of
one point, the surface variation descriptor Di for i-th point
Pi of the point cloud is defined as:

Di =
√

(σl
i)

2 + (σg
i )2 (5)

where σl
i is variation of local histogram of Pi and σg

i is
variation of global histogram of Pi. Through computing Di

of every point, a map representing surface variation degree
of the whole point cloud is obtained and shown as Fig. 11.
It intuitively shows degree of surface variation on the whole
point cloud, although there are noisy places. And the blue
regions such as groove region and edges has high variation
and white regions are almost flat.

(a) (b)

Fig. 11. Surface Variation Map. (a) Front view. (b) Side view.

By analyzing the surface variation map, points within the
groove region are centralized and almost connected tightly.
Thus it is simple to screen out the groove region and delete
all the irrelevant points. Ultimately, only groove point set
is left and groove detection result (blue region) is shown in
Fig. 12. In next step the groove point set would be used to
generate welding trajectory for the robotic arm.

(a) (b)

Fig. 12. Groove Detection Result. (a) Front view. (b) Side view



IV. WELDING TRAJECTORY PLANNING

The welding trajectory planning is totally based on the
groove point set obtained by the groove detection algorithm
as shown in Fig. 12. Here the point set is segmented into
a series of consecutive regions (blue, green and red for
distinction), shown as Fig. 13. And each segment region
generates one way point. All the way points together form
the final trajectory.

(a) (b)

Fig. 13. Groove Point Set Segmentation. (a) Front view of segmented
groove region. (b) Side view of segmented groove region.

The sum of space distance from the way point of each
segmented region to every point of the same segmented
region should be as short as possible. And this problem could
be defined as a function for each segmented region:

~Isi = Pw − P s
i , f = argmin

m∑
i=0

∣∣∣~Isi ∣∣∣ (6)

where Pw is the unknown way point and P s
i is the i-th point

of one segmented region. When f gets to its minimum by
gradient descent method, Pw is obtained as the way point.

After iterating every segmented region of the groove point
set by Equation (6), the final welding trajectory planning
result is shown as Fig. 14.

(a) (b)

Fig. 14. Welding trajectory planning. (a) Generated welding trajectory
inside the segmented groove point set. (b) The trajectory inside the raw
point cloud.

And the three dimensional orientation of each way point
of the generated trajectory is represented as a unit vector ~ow,
defined as:

~Ow =

m∑
i=0

~usi , ~ow =
~Ow∣∣∣ ~Ow

∣∣∣ (7)

where ~usi is the i-th point normal of the segmented region.

V. RESULTS

An open welding environment in Fig. 1 with four types
of welding workpieces is prepared for experiment. Fig.
15 presents experimental welding workpieces which are
straight-line, curve-line, box and cylinder type respectively.

(a) (b) (c) (d)

Fig. 15. Experimental welding workpieces with their welding groove
colored by red. According to shape of welding groove, the workpiece is
defined as: (a) Straight-line. (b) Curve-line. (c) Box. (d) Cylinder.

In order to objectively evaluate performance of the pro-
posed method, three vital elements are considered:

1) The whole processing runtime from inputting raw point
cloud to generating motion trajectory.

2) Overlapping rate of detected groove region and actual
groove region.

3) Disparity between the generated trajectory and stan-
dard welding trajectory.

The processing runtime as an essential factor could evalu-
ate efficiency of the proposed robot system for automatic
welding. The overlapping rate is used to illustrate accuracy
of the welding groove detection algorithm. The disparity
is presented by actual automatic welding execution. Thus
focusing on three elements above, in experiment each work-
piece shown in 15 is tested. In fact, although the RGB-D
camera is well calibrated, the error of measurement of depth
still exists.

A. Processing Runtime Results

To measure processing runtime of the proposed method for
surface point cloud of one workpiece, the function ”clock()”
of C++ is used to capture system start time and end time of
the method. Due to running performance of the PC, for each
workpiece we test ten times and record every runtime from
inputting raw point cloud to generating motion trajectory,
shown as Table I.

B. Groove Detection Results

To evaluate accuracy of the welding groove detection
algorithm, the result of the algorithm needs to be compared
with the ground truth (actual groove region defined by the
authors). Inspired by the concept of IoU (Intersection over
Union) in 2D image processing, the 3D overlapping rate
λ of detected groove region and actual groove region is
introduced:

λ =
noverlap

nd + ngt − noverlap
(8)

where nd is number of points of detected groove region, ngt
is number of points of actual groove region and noverlap is



TABLE I
RESULTS OF PROCESSING RUNTIME FOR EACH WORKPIECE

Types Pnum t1(s) t2(s) t3(s) t4(s) t5(s)

Straight-line 265800 14.01 13.93 14.15 14.16 14.06
Curve-line 266497 14.05 14.39 13.91 14.28 14.14
Box 127031 7.61 7.44 7.45 7.46 7.53
Cylinder 121429 6.11 6.05 6.03 6.10 5.98

t6(s) t7(s) t8(s) t9(s) t10(s) tmean(s)

14.02 14.05 14.10 14.21 14.23 14.09
13.92 14.18 14.08 14.05 13.82 14.08
7.59 7.49 7.52 7.49 7.60 7.51
6.07 6.20 5.97 6.02 6.03 6.05

Pnum = Number of points. tmean = Average time of runtime.

number of points of overlapping region between the detected
groove region and the actual groove region.

The welding groove detection process for each workpiece
in 15 is shown in Fig. 16. And detection accuracy (defined
by 3D overlapping rate) results are presented in Table II.

+ =

(1) (2) (3) (4) (5) (6)

+ =

+ =

+ =

Fig. 16. Welding groove detection workflow. (1) Input raw point cloud of
each workpiece. (2) Global normal map. (3) Surface variation map by groove
feature histogram (GFH). (4) Filtering results (detected groove region). (5)
Ground truth of groove region in raw point cloud. (6) Overlapping map by
adding detected groove region and ground truth of groove region. Eventually
the overlapping map is used to compute 3D overlapping rate to evaluate
accuracy of the groove detection algorithm.

C. Motion Execution Results

As discussed in Section IV, the motion trajectory genera-
tion is based on the point set of the detected groove region as
shown in Fig. 16. Therefore the robotic manipulator drives
the welding torch following the motion trajectory to execute
welding tasks. Fig 17 presents actual motion execution of
the robotic manipulator.

As shown in Fig. 17, the motion of the manipulator fits the
generated trajectory tightly without terrible mismatch. And
due to cartesian path planning of the Moveit [23] package,

TABLE II
RESULTS OF GROOVE DETECTION ACCURACY FOR EACH WORKPIECE

Types λ1 λ2 λ3 λ4 λ5 λmean

Straight-line 92.74 93.01 92.81 92.49 91.35 92.48
Curve-line 81.24 82.58 82.13 81.87 82.29 82.02
Box 81.48 82.65 82.02 80.49 81.97 81.72
Cylinder 63.27 61.79 64.69 67.57 65.75 64.61

λ1-λ5 = Accuracy (%) of each test. λmean = Average accuracy.

(a)

(b)

(c)

(d)

Fig. 17. Actual motion execution of the robotic manipulator. (a)-(b)
represents type of straight-line, curve-line, metal box and metal cylinder
workpiece respectively. And their motion order is from left side to right
side.

the welding torch is able to complete welding tasks well
(smoothly following the trajectory of groove).

According to running performance (runtime and detection
accuracy) of the proposed method, the robot system has
capability of realizing automatic welding tasks compared
with traditional teach and playback method. Although the
groove detection and trajectory planning method takes up
most of computational resources, it is acceptable for the
actual welding.

VI. CONCLUSIONS

This paper presents an integrated robot system for in-
dustrial welding with an automatic groove detection and
trajectory planning method. The system is composed of a
robotic manipulator (Universal Robot 3), an RGB-D camera
(Realsense D415) and a welding torch. And the system has
good flexibility of facing different welding situation. The
software framework is totally built up on ROS and 3D
point cloud processing is the key part. In real experiment
four types of general welding workpiece are tested. Through
evaluating accuracy between welding trajectory generated by
the proposed method and the ground truth of welding groove,
the motion execution performance proves good feasibility of



the designed robot system. The current problem is that the
proposed method can not cope with larger 3D point cloud of
welding workpiece surface due to more complex geometrical
region and noise. In future work, neural network instead
of geometrical feature based method may be introduced to
improve robustness and accuracy of welding groove detection
algorithm. And more important work is that the improved
robot system would be implemented into actual industrial
welding tasks.
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