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Energy Shaping Methods for Asymptotic Force Regulation
of Compliant Mechanical Systems
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Abstract— In this brief, we address the robust force regulation
problem of mechanical systems in physical interaction with
compliant environments. The control method that we present is
entirely derived under the energy shaping framework. Note that
for compliant interactions, standard energy shaping methods (i.e.,
potential shaping controls using static-state feedback actions)
cannot guarantee asymptotic stability since they are not robust
to unmodeled forces. To cope with this issue, in this brief, we
integrate force sensory feedback with a robust energy shaping
design. This methodology allows us to incorporate integral force
controls while preserving in closed loop the port-Hamiltonian
structure, something that is not possible with traditional force
regulators. We discuss the practical implementation of our
method and provide simple numerical algorithms to compute
in real time some of its control terms. To validate our approach,
we report an experimental study with an open architecture robot
manipulator.

Index Terms— Force regulation, Hamiltonian mechanics,
Lyapunov stability, passivity-based control, robot manipulators.

I. INTRODUCTION

THE compliant force regulation problem arises in applica-
tions where a controllable mechanical system (typically

a robot manipulator) needs to exert a desired force profile
onto a deformable environment. It is used in economically
important areas, such as surgical robotics [1], and is becoming
highly valued as robots migrate from industrial settings to the
unstructured human environments [2]. Note that many of the
applications of this problem involve contact with deformable
materials whose exact stiffness properties are rarely known
beforehand.

To guarantee the safety of these contact tasks (which is
a major issue in applications involving humans), an ener-
getically passive interaction between the mechanism and the
deformable environment is needed. However, the main dif-
ficulty to preserve this passive behavior while simultane-
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ously controlling the applied force comes from the unknown
potential energy that is induced to the mechanical system by
the compliant environment. This unknown potential makes
standard energy shaping methods [3] (i.e., static-state feedback
controls) unsuitable, since they are not robust to unmodeled
forces. This issue is traditionally tackled by adding a simple
integral action of the error to be minimized; however, it is
well known that the trivial definition of this integrator makes
difficult1 to guarantee closed-loop passivity [4].

In this brief, we address the asymptotic force regulation
problem from an energy shaping perspective [5]. The con-
trol method that we present is entirely derived under the
port-Hamiltonian framework [6], and formulated for torque-
controlled mechanical systems in physical interaction with
purely elastic (i.e., lossless) environments.

A. Related Work

Note that most of the energy shaping approaches for explicit
force regulation are formulated for rigid contact [7]–[11].
For compliant interactions, some of the earliest works to
consider the environment’s potential energy are due to [12]
and [13]. The so-called force/position parallel control scheme
is proposed in [14]. This approach is based on a simple
PI force regulator, and its stability is proved with traditional
Lyapunov theory.2 However, the simplicity of the control law
leads to restrictive conditions on feedback gains that must be
satisfied to ensure stability. A method to select these gains is
presented in [15]. Doulgeri and Karayiannidis [16] report a
force regulator with an adaptive control component; similar
to [14], the stability of this controller depends on condi-
tions of several feedback gains. Compliant force regulation
is formulated in [17] as an impedance matching problem [18]
for mechanical circuits. This passivity-based approach ensures
asymptotic stability of the contact force error; however, it only
formulates the problem for a simple 1-D contact force.

The enforcement of robust asymptotic stability while pre-
serving in closed loop some sort of port-Hamiltonian struc-
ture (i.e., a skew-symmetric matrix representing gyroscopic
effects, along with a positive symmetric matrix representing
energy dissipation [5]) remains an open problem. Note that
none of the above-mentioned approaches address this issue;
the classical impedance control [18] can be framed within
this formalism, but it is not straightforward to add force

1That is, several feedback gain and initial error conditions must be simul-
taneously satisfied.

2Note that for these types of controllers, the closed-loop Lyapunov function
must be properly chosen to prove stability, something that is not needed with
the energy shaping methods that we propose in this brief.
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controls. Recently, various researchers have tackled this chal-
lenging control design problem, e.g., a method to include
integral controls for a class of port-Hamiltonian dynamics
is proposed in [19] and [20]. For the case of mechanical
systems, [21] reports a method to incorporate passive integral
actions through a suitable change of momenta coordinates.
The tracking problem for port-Hamiltonian dynamics is tack-
led through time-dependent canonical coordinate transforma-
tions in [22]. However, none of these Hamiltonian control
approaches address the compliant force regulation problem;
our aim in this brief is precisely to fill this gap in the literature.

B. Contribution of This Brief

To contribute to this problem, in this brief, we present an
energy shaping force controller that arises from robustifying
the static-state feedback regulator in [23] with the robust
energy shaping design in [21]. Note that our method is entirely
derived within the port-Hamiltonian framework, therefore its
closed-loop Lyapunov function is uniquely constructed with
the presented methodology—this feature clearly contrasts with
traditional PI regulators. To enforce asymptotic stability, our
new regulator incorporates nonlinear integral force controls
that preserve in closed-loop the port-Hamiltonian structure.
To facilitate the control implementation, we provide numerical
algorithms that compute in real time (RT) the controller. We
report an experimental study to validate this method.

C. Organization

The rest of this brief is organized as follows. Section II
presents the mathematical modeling. Sections III and IV derive
the controller. Section V reports the experiments. Section VI
gives the conclusion.

II. MATHEMATICAL MODELING

A. Notation

We denote column vectors and matrices by small and capital
bold letters, e.g., z ∈ R

h and Z ∈ R
g×h . We denote the

identity and null matrices by Ih×h ∈ R
h×h and 0h×g ∈ R

h×g ,
respectively, and the null vector by 0h ∈ R

h . We represent the
partial derivatives of a vectorial function a = a(z) ∈ R

g and
scalar function a = a(z) ∈ R with respect to z ∈ R

h by3

∂za = ∂a
∂z

∈ R
g×h, ∂za = ∂a

∂z
∈ R

1×h . (1)

We represent the Hessian matrix by ∂zza ∈ R
h×h and the

weighted-Euclidean norm by ‖a‖Z = a�Za, for a symmetric
matrix Z = Z� of appropriate dimensions.

B. Hamiltonian Dynamics

Consider a nonredundant serial robot manipulator, with
n rotational degrees of freedom (DOF). We denote the vec-
tors of joint and end-effector displacements by q ∈ R

n

and x = x(q) ∈ R
n , respectively. The manipulator’s end-

effector physically interacts with a lossless environment, which

3Note the abuse of notation using a(z) as both a coordinate vector and
a vectorial function.

imposes m elastically constrained directions (where n ≥ m).
Similar to [24], we locally decompose the coordinates of x as

x = [r� s�]� (2)

where r ∈ R
m and s ∈ R

n−m represent the vectors of
constrained and unconstrained displacements, respectively.
Physically, m = n represents a manipulator that can apply
force to the environment in any direction, while m = 1
represents, e.g., point interaction with one deformable surface.
The energy storage function (i.e., the Hamiltonian) of this
elastically constrained mechanism is given by

H(q, p) = 1

2
p�M−1(q)p + V(�r) ∈ R (3)

where M(q) ∈ R
n×n denotes the standard mass matrix and

p ∈ R
n represents the system’s momenta, which satisfies

p = M(q)q̇. For ease of presentation, we assume that no
gravitational potential is present on the system. This way, the
potential function V(�r) ∈ R only models the elastic energy
induced by the environment. The vector �r = r − req ∈ R

n

represents the relative constrained displacement, for req as the
constant undeformed equilibrium.

We model the dynamic equations of this system by [6]
[

q̇

ṗ

]
=

[
0n×n In×n

−In×n −B

][
∂qH�

∂pH�

]
+

[
0n

u

]
(4)

where u ∈ R
n denotes the control input and B > 0 ∈ R

n×n

represents a symmetric dissipation matrix.
Assumption 1 [16], [17]: The elastic energy V(�r) induced

by the lossless environment is a smooth positive-definite
potential function, with a unique constant equilibrium, whose
gradient ∂rV(�r) is strictly increasing with respect to �r, and
its Hessian matrix satisfies ∂rrV(�r) ≥ 0.

C. Canonical Change of Coordinates

Instrumental for our control design is to perform the coor-
dinate transformation (q, p) �→ (x,π). To this end, we define
the new momenta variable

π = T(x)J−�(q)p ∈ R
n (5)

where T(x) = T�(x) > 0 ∈ R
n×n represents a positive-

definite symmetric matrix (whose explicit definition is given
in later sections) and J(q) = ∂qx(q) ∈ R

n×n denotes the
Jacobian matrix of the manipulator. We assume that the
configuration of the system is such that J(q) is always full
rank. Thus, this coordinate transformation is valid only locally.

The dynamical system (4) expressed in terms of the new
coordinates (x,π) is given by (see [25] for details)

[
ẋ

π̇

]
=

[
0n×n T(x)

−T(x) −C(x,π)

] [
∂xH̄�

∂π H̄�

]
+

[
0n

T(x)v

]
(6)

with a matrix C(x,π) = Cskew(x,π) + Csym(x,π) ∈ R
n×n

composed of a symmetric and skew-symmetric parts

Cskew(x,π) = T(x)J−�(q)∂qπ� − ∂qπJ−1(q)T(x) (7)

Csym(x,π) = T(x)J−�(q)BJ−1(q)T(x) (8)
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and a new control input (which represents end-effector forces)

v = J−�(q)u ∈ R
n . (9)

The energy function (3) expressed in these coordinates is

H̄(x,π) = 1

2
π�M−1

x (x)π + V(�r) (10)

where we define the n × n mass-like matrix

Mx (x) = T(x)J−�(q)M(q)J−1(q)T(x)|q=q(x). (11)

We discuss the advantages of performing this canonical coor-
dinate transformation in later sections.

D. Energy-Based Modeling of the Force Measurements

As in [23], we model the interaction forces between the
manipulator and the environment by

R(q)fS = ∂rV(�r)� ∈ R
m (12)

where the vector fS ∈ R
m represents the measurements

of a force transducer (conveniently located at the contact
point) and R(q) ∈ R

m×m represents a known transformation
matrix from world (base) coordinates to end-effector (sensor)
coordinates. To simplify notation, we define the following
vector of interaction forces in world coordinates:

f = R(q)fS ∈ R
m . (13)

III. STANDARD ENERGY SHAPING

In this section, we present and analyze the properties
of a force regulator derived using standard energy shaping
methods, i.e., only shaping the potential energy function.

A. Ideal Scenario

The aim of the standard energy shaping control is to design
a static-state feedback regulator, which enforces a desired
potential energy function Vd(�r̃) ∈ R into the closed-loop
system (see [26]–[28] for details). To achieve force regulation,
this potential function must have a minimum at the desired
configuration. This means that the equilibrium point

�r̃ = �r − �r∗ = 0m ∈ R
m (14)

with �r∗ = r∗ − req ∈ R
m as an unknown constant displace-

ment must imply the application of the constant reference force
f∗ ∈ R

m . Following the energy-based model (12) and (13), this
reference force satisfies the relation:

f∗ = ∂rV(�r∗)�. (15)

Note that since the analytical expression of V(�r) is not
known, then, we cannot a priori compute a constant displace-
ment �r∗ at which the force f∗ is exactly applied.

Proposition 1: Consider the system (6) in closed loop with

v = −
[

k f f̃ − f∗

ks s̃

]
+ υ (16)

with errors f̃ = f − f∗ ∈ R
m and s̃ = s − s∗ ∈ R

n−m , constant
reference s∗ ∈ R

n−m , positive feedback gains k f , ks ∈ R, and

external control input υ ∈ R
n . The control law (16) enforces

the storage function

L(x,π) = 1

2
π�M−1

x (x)π + Vd (�r̃) + 1

2
ks s̃ · s̃ (17)

where the elastic energy Vd(�r̃) ∈ R has a unique minimum
at which the constant force f∗ is exerted onto the environment.

Proof: We can alternatively express the controller (16) as

v = −∂x

{
Va(�r) + 1

2
ks s̃ · s̃

}
+ υ (18)

for an added elastic energy function

Va(�r) = k f V(�r) − K r · ∂rV(�r∗) + ε ∈ R (19)

with K = k f + 1 ∈ R and arbitrary integration scalar ε ∈ R.
Direct substitution of (18) into (6) enforces (17) (the standard
potential shaping) with shaped elastic energy

Vd(�r̃) = V(�r) + Va(�r)

≥ 0

= K (V(�r) − V(�r∗) − r̃ · ∂rV(�r∗)) (20)

where we set ε = K (r∗ · ∂rV(�r∗) − V(�r∗)). We prove
the desired equilibrium by noting that the first-order Taylor’s
expansion of V(�r) around r∗ satisfies

V(�r) > V(�r∗) + r̃ · ∂rV(�r∗) ∀r 
= r∗ (21)

which means that �r∗ is a minimum for Vd(�r̃).

B. Uncalibrated Scenario

Despite the nice properties of the previous control design,
it is well known that, in real applications, it is difficult to
achieve asymptotic force regulation with simple proportional
and feedforward control actions [29]. Note that to ensure that
f̃ = 0m is an equilibrium for Vd (�r̃), the constant feedforward
term f∗ must exactly compensate the environment’s elastic
force at the desired configuration �r∗. If this static compen-
sation is not satisfied, the interaction force presents the typical
steady-state deviation, call it d ∈ R

m , from its reference.
In our approach, we model this situation by introducing d as
a constant disturbance to the closed-loop system that arises
from substituting (18) into (6)
[

ẋ
π̇

]
=

[
0n×n T(x)

−T(x) −C(x,π)

][
∂xL�

∂πL�

]
+

[
0n

T(x)(dx + υ)

]

(22)

for dx = [d�, 0�
n−m ]� ∈ R

n . We use the disturbance d to
model the common uncalibrated scenario where the numerical
control law does not exactly match the real physical input (i.e.,
the joint forces/torques). From this expression, we see that, at
steady state, the following relation arises:

−∂rVd(�r̃)� + d ≡ 0m (23)

which shows that, as expected, the controller can no longer
guarantee asymptotic stability. We use this simple example to
motivate our control developments in the following section.
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IV. ROBUST ENERGY SHAPING

In this section, we present an energy shaping approach that
allows to incorporate integral force controls within the port-
Hamiltonian framework.

A. Displacement-Independent Kinetic Energy

Following the approach reported in [30], we define T(x) as
the square root matrix of J(q)M−1(q)J�(q), that is, as the
symmetric and positive-definite matrix4 that satisfies:

T(x)T(x) = J(q)M−1(q)J�(q)|q=q(x). (24)

The motivation behind the coordinate transformation (q, p) �→
(x,π) is to render the kinetic energy in terms of the end-
effector motion and independent of the displacements vector.
Note that with this definition of T(x), the closed-loop energy
storage (17) now satisfies

L(x,π) = 1

2
π · π + U(x̃) (25)

where to simplify notation, we define the potential function

U(x̃) = Vd(�r̃) + 1

2
ks s̃ · s̃ ∈ R (26)

for an error vector x̃ = x −x∗ ∈ R
n , with a constant reference

x∗ = [�r∗�, s∗�]� ∈ R
n .

Remark 1: To compute the square-root matrix T(x), we
do not need to know its exact analytical expression (which
for more than 2-DOF is difficult to obtain). For that, in
Appendix A, we present an algorithm that computes this
matrix from the mass and Jacobian matrices.

B. Momenta Controller

To incorporate integral controls within our formulation, we
define the virtual momenta variable [21]

z = π + kπ∂xU(x̃)� ∈ R
n (27)

with kπ > 0 ∈ R as a feedback gain. In contrast with the
free-motion case in [21], note that we explicitly construct the
first m coordinates of (27) with force feedback errors.

Proposition 2: Consider the closed-loop system (22), with
a matrix T(x) satisfying (24). For this situation, there exists a
state-feedback control input υ, which enforces[

ẋ
ż

]
=

[−kπT(x) T(x)

−T(x) −C(x, z)

][
∂xW�

∂πW�

]
+

[
0n

T(x)(dx + μ)

]

(28)

with an energy storage function

W(x̃, z) = 1

2
z · z + U(x̃) ∈ R (29)

and a robust control input μ ∈ R
n that will be used later.

Proof: By equating ẋ from (22) with that from (28), we
see that the velocity relation is satisfied. By equating the time
derivative of (27) with ż from (28), we obtain

d

dt

{
π + kπ∂xU(x̃)�

} = T(x)
(
dx + μ

) − T(x)∂xW�

− C(x, z)∂πW�. (30)

4Note that by definition, the square root of a positive-definite symmetric
matrix is also a positive-definite symmetric matrix.

We obtain the controller by substituting π̇ from (22) and
solving for υ

υ = −T−1(x)(C(x,π)kπ∂xU(x̃)� + kπ∂xxU(x̃)ẋ) + μ. (31)

Remark 2: It is important to distinguish between the canon-
ical coordinate transformation of Section II and the actuated
coordinate transformation of (28). The motivation of the
latter one is to virtually enforce a momenta-like variable,
which contains a component of force-position errors (a similar
procedure as with the nominal error dynamics in passivity-
based controllers for Euler–Lagrange systems [31]). The main
difference with our Hamiltonian approach is the introduction
of the virtual dissipation element kπT(x) that appears at
the (1, 1) subblock of the interconnection–dissipation matrix
in (28). This effort-controlled dissipator (which contrast with
the more common flow-controlled dissipator [32]) is crucial to
preserve skew symmetry when an integral action is introduced.
Note that we can use this simple dissipation analogy to design
the feedback gain kπ , i.e., large values of kπ may result in
a faster minimization of the error.

Remark 3: To implement the controller (31), we must com-
pute the skew-symmetric matrix in (7) and the Hessian matrix
of the elastic energy. We can considerably reduce the apparent
complexity in the computation of Cskew(x,π)—specifically
the partial derivatives of T(x)—using the simplification that
we provide in Appendix B. As for the latter control term, note
that the analytical expression of V(�r) is unknown. To solve
this issue, in Appendix C, we provide simple algorithms to
numerically compute this term in RT.

C. Robustification via Integral Control Design

To enforce asymptotic stability of force errors, we incorpo-
rate an extra m-dimensional numerical state into the closed-
loop dynamics. This integrator is introduced through the first
m coordinates of the robust control port μ, that is

μ = [
μ�

1 0�
n−m

]� (32)

where μ1 ∈ R
m represents the actuated coordinates.

Assumption 2: For our controller design, we assume that
the algorithm in Appendix C exactly computes the first m coor-
dinates of the second control term in (31), i.e., ∂rrVd(�r̃)ṙ.

Proposition 3: The closed-loop system that arises from
substituting (31) into (22), with robust control input

μ1 = −σ (33)

for a numerical state defined as

σ̇ = kσ T�
n×m(x)z ∈ R

m (34)

with a positive gain kσ ∈ R, and a matrix Tn×m (x) ∈ R
n×m as

the n × m left submatrix of T(x) = [Tn×m (x), ∗] is endowed
with asymptotic stability of force errors.

Proof: Substitution of (31) into (22) yields the extended
port-Hamiltonian system

χ̇ = Q(χ)∂χJ (χ)� (35)
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Fig. 1. Robot manipulator used in our experimental study. We instrument
this system with an ATI Mini40 force transducer.

for an N-dimensional (where N = 2n+m) vector of extended
state variables

χ = [x� z� σ�]� ∈ R
N (36)

an N × N interconnection–dissipation matrix [28]

Q(x, z) =
⎡
⎢⎣

−kπT(x) T(x) 0n×m

−T(x) −C(x, z) −kσ Tn×m (x)

0m×n kσ T�
n×m (x) 0m×m

⎤
⎥⎦ (37)

and a closed-loop energy function

J (χ) = W(x̃, z) + 1

2kσ
(σ − d) · (σ − d) ∈ R. (38)

Note that J (χ) qualifies as a Lyapunov function since

J̇ (χ) = −kπ‖∂xJ (χ)‖2
T − ‖∂zJ (χ)‖2

Csym

≤ 0 ∀χ . (39)

This proves that (x∗, 0n, d) is a stable equilibrium of the
system. Asymptotic stability of force (and position) errors
directly follows by invoking the LaSalle principle [33].

Remark 4: We recently developed in [34] a new energy
shaping method to further robustify a force control law similar
to (31). Since the method in [34] enforces input-to-state stabil-
ity [35], thus, it helps to passively reject bounded disturbances
(modeling, e.g., uncertain estimations or measurement noise)
from the closed-loop system.

V. EXPERIMENTAL VALIDATION

A. Setup

We test the performance of our force control method with a
TX-60 Staubli robot manipulator (Fig. 1). In this experimental
study, we attach an elastic chain made with rubber bands to the
manipulator’s end-effector. To measure the interaction forces
with the elastic environment, we instrument the manipulator
with an ATI Mini40 force transducer.

The Staubli robot has with a low-level interface [36] that
allows us to set the torque control input of each joint. To
provide a deterministic RT behavior to the control algorithms
(a key feature to guarantee a constant and small sample time),
we use a Xenomai-patched RT-Linux PC [37] to process the
feedback signals and compute the control law; we send this
torque command via TCP/IP to the low-level servo controller.

Fig. 2. Conceptual representation of the RT control architecture of the torque-
controlled mechanical system.

Fig. 3. Conceptual representation of the elastically constrained and uncon-
strained directions of the mechanical system.

We implement all the algorithms at an RT servo loop of
δt = 4 ms. Fig. 2 shows a conceptual representation of the
control architecture.

We conduct this experimental study with the setup concep-
tually shown in Fig. 3. Note that we use the elastic chain to
perform dynamically rich movements5 without losing physical
interaction. In this brief, we only consider motion of the
manipulator’s second and third joints. This provides a planar
elbow configuration with q = [q1, q2]� ∈ R

2. We represent
the end-effector position x = [r, s]� ∈ R

2 with polar coordi-
nates, where r ∈ R denotes the linear constrained displacement
and s ∈ R is the angular unconstrained displacement. We
compute the interaction force by f = ‖fS‖ ∈ R. To implement
the controller, we use k f = 25, ks = 500, kπ = 0.05, and
kσ = 25. The design of the gains k f and ks follows that of
standard proportional feedback, kπ represents an error dissi-
pator (thus small values make convergence slower/smoother),
and kσ modulates the integral action.

B. Experiments With Standard and Robust Energy Shaping

To test the stability of our controller, we apply impulse-like
external perturbations to the closed-loop mechanical system.
We do this by manually pulling the stretched elastic chain
from the desired equilibrium (i.e., from zero initial force
and position errors). We set the desired force and position
references to f ∗ = 10 N and s∗ = 65°.

5For slow motions, all the inertia-dependent terms are negligible, i.e.,
friction and potential forces become the dominating effects in the system.
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Fig. 4. Comparison of the force error | f̃ | obtained with the standard potential
energy shaping approach and the robust force controller.

Fig. 5. Time evolution of the unconstrained position error |s̃| (obtained with
the robust controller) and the potential shaping control action τ1.

Fig. 4 shows a comparison of the force error | f̃ | obtained
with the controller (16) with υ = 0n [Fig. 4 (top)], and
with υ as in (31) and μ1 as in (33) [Fig. 4 (bottom)]. The
first case corresponds to the standard energy shaping design,
while the second case corresponds to the robust controller.
This figure shows that with the static-state feedback control
approach, a constant bias is not compensated. As expected,
we obtain asymptotic stability by incorporating the port-
Hamiltonian integral action. The top part of Fig. 5 shows the
unconstrained position error |s̃| that is obtained with the robust
energy shaping design.

To analyze the specific contribution of each control action in
(31), consider the following decomposition of the joint torque
input that arises by solving (9) for u:

u = − J�(q)∂xU(x̃)�︸ ︷︷ ︸
−τ 1

− BJ−1
T (q)kπ∂xU(x̃)�︸ ︷︷ ︸

−τ 2

+ J�
T (q)Cskew(q,π)kπ∂xU(x̃)�︸ ︷︷ ︸

τ3

− J�
T (q)kπ∂xxU(x̃)ẋ︸ ︷︷ ︸

−τ 4

− J�(q)

[
σ
0

]
︸ ︷︷ ︸

−τ 5

∈ R
2 (40)

for J�
T (q) = J�(q)T−1(q) ∈ R

2×2.
The bottom part of Fig. 5 shows the time evolution of

the standard potential shaping control τ 1. The terms τ 2, τ 3,
and τ 4 represent the different actions of the proposed momenta

Fig. 6. Time evolution of the τ2 and τ3 joint control actions of the proposed
momenta controller.

Fig. 7. Time evolution of the τ4 control actions of the momenta controller
and the robust control action τ5 of the proposed asymptotic force regulator.

controller. The top and bottom parts of Fig. 6 show the
time evolution of the damping-like τ 2 and skew-symmetric
τ 3 control actions, respectively. The top and bottom parts
of Fig. 7 show the computed term τ 4 and the joint torque
corresponding to the force integral action τ 5, respectively.
Note that with respect to the previous momenta controls,
τ 4 shows an increased magnitude and the presence of noise.
For simplicity, we compute τ 4 using a filtered version of
the first method described in Appendix C. These results
experimentally prove the proposed theory, i.e., that the force
error is minimized by compensating the unknown bias with
the integrator’s action.

C. Comparison of the Computation Methods for ∂rrU(�r̃)ṙ

The aim of this experimental study is simply to compare the
online numerical methods detailed in Appendix C, therefore no
force control is performed. We conduct this brief with the same
setup shown in Fig. 1. To qualitatively compare the methods,
we move the end effector along an arbitrary trajectory, while
simultaneously estimate the term ∂rrU(�r̃)ṙ. Fig. 8 shows the
trajectory of the constrained displacement r and the measured
interaction force f .

Fig. 9 shows a graphical comparison of the measured force
difference (i.e., the unfiltered secant method)

δ f (t) = f (t) − f (t − δt) ∈ R (41)

and the force differences δ̂ f (t) computed with the Broy-
den and gradient-descent rules (as detailed in Appendix C),
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Fig. 8. Constrained displacement r and force f profiles that we use for the
experimental comparison of the online methods described in Appendix C.

Fig. 9. Comparison of the measured force difference δ f (t) and the ones
computed with the Broyden (above) and gradient-descent (below) update rules.

with K = 1. From these results, we see that ∂rrU(�r̃)ṙ is
closely approximated by both methods. Note that these meth-
ods compute the unknown term mostly from state variables
(where we use a minimum of force information just to update
the model) and present a little noise, therefore they are suitable
for model-based control. We obtain these results using the
Broyden method with a gain � = 0.2 (small values help to
filter out noise) and using the gradient-descent method with
approximated nonlinear model f ≈ η1r + η2r2 + η3r3 and
gain kη = 5 × 106.

VI. CONCLUSION

In this brief, we presented an energy shaping method to
control the interaction forces between a mechanical system
and a compliant environment. Our asymptotic controller was
designed in a constructive manner: we first derived a stan-
dard potential shaping control action, then we incorporated
a state-feedback momenta control component, and finally we
robustified the method by including integral force controls. We
presented the experimental results to validate our method.

The canonical coordinate transformation (5) results instru-
mental to preserve in closed-loop the port-Hamiltonian struc-
ture. Note that the implementation of our method does not
require the explicit analytical forms of the square-root matrix
and the environment’s stiffness model. For that, we provide
numerical algorithms to compute these terms.

As future research is the inclusion of the inertia-dependent
terms within an adaptive estimation algorithm. This way,

the exact mass parameters of the mechanical system does not
need to be exactly identified beforehand.

APPENDIX A
COMPUTATION OF T

Consider the symmetric and positive-definite operational
space mass matrix N = J−�MJ−1 ∈ R

n×n . Note that since,
locally, rank{N−1} = n, then N−1 is diagonalisable, that
is, N−1 = VDV−1, where V ∈ R

n×n is a matrix whose
columns are the n eigenvectors of N−1, and the diagonal
matrix D ∈ R

n×n has as elements the eigenvalues of N−1.
We compute the square-root matrix as follows:

T = VD1/2V−1. (42)

Free numerical libraries [38] can be employed to compute in
RT the eigenvectors and eigenvalues of N−1.

APPENDIX B
COMPUTATION OF Cskew

An equivalent expression (with arguments omitted to avoid
clutter) of the gyroscopic forces in (6) is as follows:

−Cskewπ = ∂qπ q̇ − TJ−�∂q
{ 1

2 p�M−1p
}� (43)

which comes from time differentiating (5) and grouping the
corresponding terms. From [26], we know that the partial
derivative ∂q{1/2p�M−1p}� = Ep, for a matrix

E = 1
2∂q{p�M−1} ∈ R

n×n . (44)

Since Cskew = −C�
skew, then we compute it by

Cskew = TJ−�EJ�T−1 − (TJ−�EJ�T−1)� (45)

which only requires the partial derivatives of the mass matrix.

APPENDIX C
COMPUTATION OF ∂rrVd (�r)ṙ

A. Secant Method

Note that the sensor-based expression K d
dt f(t) =

∂rrVd (�r(t))ṙ(t) satisfies for lossless environments. The sim-
plest way to compute this term is to use, for sample time δt ,
a two-point estimation of the slope

kπ∂rrVd(�r̃(t))ṙ(t) ≈ kπ K
f(t) − f(t − δt)

δt
. (46)

Since force transducers are usually noisy, a low-pass filter is
needed to smooth the right-hand side of the above estimation.

B. Broyden Update Rule

Let �(t) ∈ R
m×m denote an estimation of ∂rrVd(�r̃(t)).

Given observations of displacements δr(t) = r(t) − r(t − δt)
and forces δf(t) = f(t)− f(t −δt), we can iteratively compute
�(t) by

�(t) = �(t − δt) + �
K δf(t) − �(t − δt)δr(t)

δr(t)�δr(t)
δr(t)�

∀δr(t) 
= 0m (47)

for 0 < � ≤ 1 as a tuning gain. For force control applications,
small values of � help to filter out noise from the sensor
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measurements. Note that the update rule does not ensure
the estimation of a symmetric matrix, i.e., it only computes
a matrix �(t) that approximates K δfi (t) ≈ K δ̂f(t) =
�(t)δr(t) (see [39] for details).

C. Gradient-Descent Rule

Consider the approximated model f ≈ A(r)η, for a
regression matrix A(r) ∈ R

m×κ and parameters η ∈
R

κ . We approximate the discrete difference by δf(t) ≈
∂r{A(r(t))η}δr(t) = W(r(t), δr(t))η, for a known regression
matrix W(·) ∈ R

m×κ . Given this model, we compute in
RT δ̂f(t) = W(r(t), δr(t))̂η(t) ∈ R

m , where we update the
variable parameters η̂(t) ∈ R

κ with the gradient-descent rule

η̂(t) = η̂(t − δt) − W�(r(t), δr(t))kη(δ̂f(t) − δf(t)) (48)

for a tuning gain kη > 0 ∈ R. With this method, we
continuously vary η̂(t) such that the error [δ̂f(t) − δf(t)] is
minimized, see [40] for a similar approach.
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